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Ap;t;g?t.' The linear theory of growing longitudinal plasma osciliations is
reviewed here because of its importance in explaining ionospheric, inter-
planetary, and solar phenomena. Dispersion relations are derived for such
oscillations in cold and warm collisionless plasmas assumed to be homo-
geneous in space. Several velocity distributions are considered both with-
out and with an external magnetic field. The physical mechanism of growth
is discussed, and finally the natural phenomena are described which today

are attributed to this type of plasma instability. H’(Atf\ or



1. Introduction

This review is concerned with the growth of small-amplitude longitudinal
oscillations in plasmas and with the occurrence of such plasma instabilities
in space. Although nuclear fusion rrojects have provided the stimulus for
much research in plasma theory, there is now an increasing awareness of the
relevance of this theory to plasmas in the upper atmosphere of the earth
and in interplanetary space for which new applications of laboratory plasma
models are being discovered.

Unstable longitudinal oscillations were first detected in two cold
streams of charged particles moving at different velocities (PIERCE, 1948;
HAEFF, 1949). This was called the "two-stream instability" and the term
has since been used in a more general sense, applied to multistream inter-
actions and to the instability which appears when the electrons in a
plasma have a net drift relative to the ions. The term "drift instability"
is also used in the latter case.

In Section 2 of this review dispersion relations are derived by linear
theory for longitudinal oscillations in cold and warm homogeneous collision-
less plasmas. In Section 3 the solutions of the dispersion relations are
obtained for various plasma configurations, and the attempts which have
been made to remove some of the restrictions of the theory are discussed.
The physical mechanisms causing the instabilities are described in Section k4,
and the interpretation of phenomena such as solar radio noise in terms of
plasma oscillations is presented in Section 5 which is intended to provide

examples rather than a comprehensive summary.



2. Derivation of the Dispersion Relations

Two approaches may be used to examine longitudinal oscillations in plasmas.
The first is based on the hydromagnetic equations which describe the conser-
vation of density, momentum, and energy, while the second is the kinetic
approach, based on the Boltzmann equation for each species of particle.
Maxwell's equations connect the electromagnetic field components to the
charge and current densities, but for studies of longitudinal oscillations
it is often sufficient to use Poisson's equation. For zero-temperature
plasmas both theories give the same result, but for plasmas possessing
finite temperatures a kinetic analysis must be used in order to take
account of Landau damping. LANDAU (1946) has shown that small-amplitude
longitudinal oscillations in a collisionless plasma are damped. This
phenomenon is discussed further in Section k.

We solve here the initial value problem for the behavior of a
nonsingular plasma system perturbed at t = O, using the Laplace trans-
form technique according to LANDAU. VAN KAMPEN (1955) treated the problem
in terms of normal modes, and CASE (1959) and BACKUS (1960) performed
comparative studies of the two methods. Both give the same results for stable
plasmas, but according to BACKUS a normal mode analysis may lead to incorrect
results for unstable plasmas.

In this section, dispersion relations are derived for small-amplitude
longitudinal oscillations in a cold plasma, a warm plasma, and a plasma in
an externally produced magnetic field; the plasma is assumed to be collision-
less and homogeneous in space. The results are obtained by linearization of
the equations describing the fluctuations and are therefore sufficient to
determine whether the plasma is unstable, but insufficient to describe the

final state of the plasma.



2.1 Dispersion relation for cold streams

We consider first a plasma consisting of n streams such that each stream
contains only one species of particle, and that particles move only with
the velocity of the stream and have no thermal motion. It is assumed that
no collisions occur and that the only forces acting on the particles are
internal electromagnetic. The equations of conservation of density and

momentum for each stream are

on,
31—:1 +Vv (njgj) =0 (2-1)

du . ijg\

g_E‘l+(u.-V)u.-?-i/E+-——— =0
- =J mjK— c / ?

~
no
N

S

where Ej’ nj, qj and m‘j are the stream velocity and density and the
particle charge and mass, respectively. E and B are the internal electric

field and magnetic induction which satisfy Maxwell's equations

V.E:).mp (2-3)
V- -B=0 (2.4)
o3
192
VXE=- <35t (2.5)
bu ., 19E
VXE:——C--J_i'E' t s (2.6)

where

(2.7)
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The plasma is assumed to be slightly perturbed from its zero-order

configuration in which go = Eo = 0, and Ps 0. If lo # 0, the magnetic
field produced by _,10 is neglected.

Substituting

o]
1

5™ %0 T (o)
(2.8)

g = Uy, *ug (nt)

into equations (2.1) and (2.2), and linearizing by including only first-

order terms in the perturbed quantities, we obtain

on
- .
B_{L N njo(v ) 331) tuy, " VR =0 (2.9)
du q u, X B
=j1 . 3 =jo =1\ _
5’7;-‘1— * (B-jo V>Ejl ) m E Y c > = 0. (2.10)

Next we take Fourier-Laplace transforms in space and time

F(_IBW) =jmd3r—£wth(£,t)e i(wt -k - £) s

where [F(r,t)| < ﬁMeYt! and Im(w) >y, and obtain from equations (2.9)

and (2.10)
q. u., X B :
[ﬁ_z@ N __19___L> . *]
AN c K (2.11)
u., (kw) = ,
J ik » u., -w)



and

q u. X El *
* n. k _l E + _JO—__ + u.
‘1 jo m, \=1 c —J1
J J , (2.12)

n. (5)‘9) =3 R -
jl i(k Ui - W)

*
where njl and Ejl

* *
Ejl(z’t = 0), respectively. Define E, and B, similarly.

are the Fourier transforms of njl(g,t = O) and

The Fourier-Laplace transforms of Maxwell's equations (2.3) to (2.6)

are

ik + E = lmpl (2.13)

kB =0 (2.14)

ik X E; =% (108, + §l*) (2.15)
ik X By = L‘—‘; i - % (iwE, +E ) (2.16)

When no external magnetic field is present (Eo = O), a consistent
solution of equations (2.11) to (2.16) can be found for which gl = Q0 and
El is parallel to k. This solution represents pure longitudinal oscillations.
Combination of equations (2.7), (2.12), and (2.13) gives the electric field

for this solution

* *
q.n q u
-lmy[ 31 L 4 go= 312]
oti(k » u. - w) (k * u. -w)
;o= =g == k
E, (kw) = = > (2.17)
2 K
b3
)
( (k+u, -0)°
J



where the plasma frequency of a stream.wpj is defined by

2
o kg n.
. 2
DJ 3
Now
E, (k,t) =f aw E(kw)e T, (2.18)
C

where the contour C passes above all singularities in the complex w-plane
(Im(w) > Y). This integral can be evaluated by closure of the contour

with a semicircle in the lower half of the w-plane. The integral may then
be expressed as the sum of the residues at the poles of the integrand, each
pole of E(g,w) contributing a solution e-ﬂﬁat. Poles below the real w-axis
correspond to damped solutions, and poles above the real axis to growing

solutions. Although E(g,w) was defined only for Im(w) > Y, equation (2.17)

defines its analytic continuation for Im(w) S y. For nonsingular initial

*
perturbations nyy and_Ejl the poles of E(k,w) are given by
2
W,
H(k,w) = 1 -Z pJ 5 = 0. (2.19)
- (k cu, - w)
J — —=Jo

This is the dispersion relation; it is examined for growing solutions in

Section 3.1.

2.2 Dispersion relation for warm streams

We next consider streams of plasma in which the particles have a velocity
spread about the mean stream velocity. The external fields are assumed to

be zero. It is now necessary to use the Boltzmann equation rather than the



hydromagnetic equations. Let fj(z,z,t) be the number density of particles
of the jth stream in phase space. The collisionless Boltzmann equation,

usually called the Vliasov equation, is

of . of. q. v X B of .
I CRE ) R (2-20)

J
The charge and current densities in terms of fj are

J (2.21)

and the components of the electromagnetic field satisfy Maxwell‘s equations
(2.3) to (2.6). As in the preceding section, pure longitudinal oscillations
are possible, and we may therefore set B= O and use Poisson's equaticn
(2.3) for the electric field.

Consider a small departure from equilibrium
= + .

If only first-order terms are retained, equation (2.20) becomes

af.l af.l Eﬂ o
St TRE -0

a. of | x
B R L]
mj§1 ov !
fjl(_l_{_’l’w) = . (2'22)




and combination of equations (2.13), (2.21), and (2.22) gives

E (k0) = (2.23)

I

g(g,t) may now be found by inverse Laplace transformation and the residue
theorem. We define g(ggo) for Im(w) £ Y to be the analytical continuation

of equation (2.23). The dispersion relation, which gives the poles of

gt

E(k,w) and therefore solutions e , 1is
of .
o k. 2
bng .~ - ov 3
H(k,w) = 1 + J f av = 0. (2.24)
Lopmy? v -k X
J
k-
Let u = k and integrate fjo over the ccmponents of v perpendicular
to k. Then
1
H(k,w) = 1 + 1—2— f & _uwd‘; =0, (2.25)
kvce
where

For Im(w) > O the contour C lies along the real u-axis from -« to . For
Im(w) £ O the contour C passes below the pole of the integrand at

u = w/k, and the integral is thus continuous in the w-plane. This



!
prescription for the analytic continuation cf /\—E—Q%%%% was introduced
J -

by LANDAU (1946).

We now evaluate H(g,w) for some simple distribution functions

2 1

2 2
- U. + A,
(u J) d

1>

a) g(u) =prj

J
This is a sum of one-dimensional Cauchy resonance distributions, each
distribution having a mean velocity Uj and a mean thermal speed.Aj. The
distribution is "unphysical' in the sense that the kinetic energy associated

with it is infinite.

From (2.25) we obtaln by elementary integration
2
w__ .

Hkw) = 1 -T BJ =0 (2.26)

(o -k - U, + ikA,)

J dJ

uNJAj3 N 3
SN [ }

Jjo n2 (X _ Hj)2 +_AJZ

This is a three-dimensional Cauchy resonance distribution with mean velocity
gj and mean thermal speed.Aj. The kinetic energy associated with it is

finite. From (2.25) we obtain by elementary integration

(0 - k - U, +3ikA))
Hk,w) = 1 —Yw 2 J 33 = 0. (2.27)
SIS PP

~N3/2
c) fjo(z) =N, (—:l> exp [- Yj(l - LJ.J-)EJ .
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This is a three-dimensional displaced Maxwellian distribution with a mean

velocity Qj. The mean thermal speed is

- -1/2
by = (2vy) )

and the temperature Tj of the distribution is

where x is Boltzmann's constant. For this distribution the dispersion

relation from (2.25) is

- L +z,2(5.)]
H(ko) = 1+) ——s—d—d— (2.28)
~ kD
J J
where
xT. 1/2
o - ()
bnN . q,
" JqJ
e =Y M2 ook U)/k
J J
and

ig
2(c) = 21 exp(c?) [ exp(-t2)at

v~
The function Z(¢) and its first derivative are tabulated by FRIED and

CONTE (1961).
2.3 Magnetized plasma

In this section a plasma in a uniform, external magnetic field Eo is

examined. Since the analysis takes the same form as that in the
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preceding section but is algebraically more complicated, only an outline
is presented.
The basic equations are Maxwell's equations (2.3) to (2.6) and the

Vlasov equation (2.20). For a small departure from equilibrium
fj(z‘.’l’t) = fjo(x) + fjl(_I_.)_Y_)t) 2

the zero-order Vlasov equation becomes

Of .
(xxB) 52 =0, (2.29)

while the first-order equation is

of.

of. q. (xxB ) of, q. vx B of .
S E o/ 91,3 - N o
TX or * m; c ov * m, <El H—r ov o

(2.30)

Let v = (vk,vy,vz) in Cartesian coordinates where Eo is taken along the

z-axis. In cylindrical coordinates v = (vi,¢,vz), where y12 = vx2 + vyg
and tan ¢ = vy/vx. Then equation (2.29) is satisfied by
£50(¥) = £i,(vv,) - (2.31)

Equation (2.30) may be reduced by Fourier-Laplace transformation to
an ordinary differential equation for fl(gngn), in which the only
derivative of fl to appear is Bfl/a@. The solution of this equation may
be substituted into Maxwell's equations (2.13) to (2.16), and an equation
obtained for E(k,w). This analysis has been performed in detail by
BERNSTEIN (1958) for a stationary Maxwellian plasma, and by HARRIS (1961)

for any fjo satisfying equation (2.31). In general, longitudinal modes
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(_E_l parallel to k, B,

_}5) cannot be propagated independently in a magnetized plasma unless k is

= 0) and transverse modes (Ql, _]}l perpendicular to

parallel to go. However the coupling between the modes may be neglected
if w/kc << 1 and Vt/c < 1, where Ve is a mean thermal velocity. Under
these assumptions the general dispersion relation for longitudinal

oscillations with wave-vector k in the x-z plane is

kmiq,® oo o 2n @
- 2 S J '
H(k,w) = k° - [ dv, [ v, dvy [ dg J; de

- B J e Vo vo %
af.o
cGlowe )k - 31> =0 ,(2.32)

q.B
where w_. = .2 (the gyrofrequency), A = sign q., v' = (v‘ ,0',v ) and
cJ mjc 3’ - 1 Z

i(w - kZVZ) ikxv‘
~ (p -9') + —= (sin ¢ - sin cp‘):l.(2.33)
cd ¢

Glo,p') = exp [—

For a distribution function of the form

Jo

f, (vl,vz) = Nj(Yj/“)3/2 eXP{‘ Yy [(Vz B Uj)e ¥ v'z:l}

which is a displaced Maxwellian, representing a stream with mean velocity
Uj parallel to the magnetic field, the dispersion relation (2.32) may be
reduced to

= 2 2 i =
Hk,w) = kx° + EZYjij 1+ iy I(yj)] 0, (2.34)

J
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where
Kk 2t° kx2 gin® % %
(y) = f dt exp (m - 5 - > > (2.35)
. Y.
Ccj Jjejd
and
w -kU
y. = 2
J o5

The function I(y) is known as the Gordeyev integral (GORDEYEV, 1952).

For the general case

HARRIS reduces (2.32) to the form

2
Hk,w) = y lmq y [ dvZ [ 2nv_,_de

h—-—oo -

of XL
nJ ‘> J )
Yoy of. DN Yej

o
— t+ k = } = 0.
[w avL o +k AR z EGZ o + kv, + T, )

(2.36)

This form enables one to deduce readily the dispersion relation for
longitudinal oscillations in cold magnetized streams.,
3. Unstable Longitudinal Oscillations

3.1 Instability in cold streams

The dispersion relation given by equation (2.19) has been applied to such

systems as two electron streams in relative motion passing through a




1k

stationary positive background, an electron stream passing through an ion
stream, and two colliding neutral plasmas for which the interaction of four
species of particles has to be considered.

Both PIERCE (1948) and HAEFF (1949) observed fluctuations of long
electron beams in electronic devices and interpreted them in terms of space-
charge waves, thereby introducing the two-stream instability. PIERCE de-
rived the dispersion relation for an electron stream traveling through a

gas of cold ions

2 2
w_ . w
pi_ , __ "pe -1

0 (v - kuh)z

3

where it is assumed that the wave-vector k is parallel to the electron

stream velocity uo. The solution for the wave-vector

u

Yoo W i2 - 1/2
k =&7—-i‘i—"—p <"P‘—" > P
u

o o}

shows that for w < wpi there are two types of wave, each having phase
velocity equal to the electron stream velocity and having amplitudes
which are damped and growing in space, respectively.

HAEFF derived the general dispersion relation (2.19) for a multi-
stream system, and applied his result to a single electron stream, in which
the oscillations are neither damped nor growing. He also considered a

two-stream system for which w but an algebraic error invalidates

pl ~ “pe’
his results.
The growth rate in time of longitudinal oscillations in an electron

stream traveling through a uniform ion background has been evaluated by
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i6 . . .
BUNEMAN (1958). Ifw = lole”, the maximum rate of growth in time occurs
when 6 = n/3, and 6 takes this value when the resonance condition kuO = wpe
is satisfied. The maximum rate of growth is thus

m \1l/2
[Im<w)]max - % <—2me_> mpe :

For a proton background the shortest e-folding time is l8gpe_l. For a

particle background such that m =m
-1

5 the e-folding time would be

1.16mpe BERNSTEIN and TREHAN (1960) point out that all perturbations

having wavelengths greater than

e ()
pe i

are unstable. BUNEMAN suggested that these growing longitudinal oscillations

i
O

may tend to destroy the electron and ion drifts caused by an external electric
field, and may thus provide an electrical resistivity mechanism in a
collisionless plasma.

The collision of two identical neutral plasma clouds moving with
velocities iuo has been analyzed by KAHN (1957, 1958). The relative motion
of the two sets of electrons is converted into longitudinal oscillations

u
within a distance A ~ 69_ , and subsequently the two sets of lons, moving

pe
through the stationary electrons with velocities iub, interact with the

electrons to cause additional longitudinal oscillations. The appropriate
dispersion relaticn
2 2 2

a0 w_, w_.
ke pe . pi + Pl

T/ ok - u)? (ofk +u )
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has complex roots for w with Im(w) > O when k < kK oy Thus any dis-

turbance with wavelength A > }‘min’ where

)‘min =m/2 uo/wpe >

is amplified, and the counterstreaming ion configuration becomes unstable
within a distance A_.
min
PARKER (1958) also showed that upon the collision of two counter-
streaming plasma clouds the electrons are arrested within a few electron
plasma periods wpe-l’ while the ions move on. The electrons then form a
uniform static electron gas of density 2nO which is perturbed by the

iocns. PARKER writes the dispersion relation as

2 2. 2y 2 2 2. 2.2 2.2
= - 2 - + +
0= (v Ku )\cwpe we) + 2ew Ve (w kKu ),
. 2. 2 < 2
where € = me/mi, and shows that complex roots for w exist when k u - = 2qu€ .
If ¢ <<1land k2uo2 < l.6wpe2, the unstable roots may be expressed as
iku 81/2
w==ka + 2 + 0(e)

o 21/2(1 - %2y /20 2)1/2
o} pe

-1/2
- , 2 2 2 .
giving a growth rate of exp[kuotil/ZQ 1/2\1 - kuag /2wpe ) J The

velocity amplitude of the electron oscillation is larger than that of the

and the electrons are

1/2

ions by a factor of [ 28 5 5 :’
2(1 - k u /aape )

therefore accelerated to energies of the order of the initial ion kinetic

energy. PARKER suggests this mechanism as a source of high energy electrons.
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The growth rate of these oscillations reaches a maximum when

o)
k uo = 2ube”, and the complex roots for w may be written

v = ku (0.97 £ i0.0k2) .

PARKER presents a graph of the variation of Im(w)/Re(w) over the entire
range O = k2u 2 s 20 2.
o pe

DAWSON (1960) investigated the general instability problem of the
longitudinal oscillations of a large number of cold electron streams passing
through a stationary ion background. He showed that instability always occurs
for a finite number of beams, but that a continuous electron velocity distri-
bution, regarded as the limit of an infinite number of beams, is stable.

In the limiting process the instability disappears and the results of

IANDAU (1946) and VAN KAMPEN (1955) are recovered.
3.2 Instability in warm streams

In Section 2.3, equation (2.25) was obtained as the dispersion relation
for warm streams in the absence of particle collisions and an external
magnetic field. We now review the effects of temperature on longitudinal
oscillations in plasma streams.

J. D. JACKSON (1960) and THOMPSON (1962) give a simple example of the

effect of a thermal velocity spread on two-stream flow. Let

o(u) = o 22 [ 1 N 1 }

- 3
pT (u-U)2+A2 (u+U)2+A2
0 o o} o

which represents two identical interpenetrating streams. The dispersion

relation has the form of equation (2.26) and has solutions
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KU \2 kU ~\271/2v1/2
W= - ikA * W '{l + <' i) + [l + 4 ___%> } }.
o” P w0, Wy .

Evidently three of the four solutions are damped in time  The fourth is

unstable if and only if

2,0 2 2,2 2, 2 2
+ -
k (Uo o ) < 2w (Uo A )

Thus growth is only possible if IUOI > AO. If ’Uol > AO wave numbers in

the range

0<k <

are unstable. The maximum wave number for which growth is possible is
k = “’p/on’ and this is reached when |U_]| = J3 a,. For [u_|>> a4,

the largest unstable wave number is k =:Jé wp/Uo, a result which can be
obtained from cold stream theory.

The conditions under which the general dispersion relation (2.25) may
have growing solutions have been studied extensively. BERZ (1956) proved
that a symmetric single-humped distribution function g(u) is always stable,
and AUER (1958) showed that any single-humped distribution function g(u)
is stable. J. D. JACKSON (1960) and PENROSE (1960) applied the Nyquist
criterion for the instability of servomechanisms to the plasma problem
and derived some general results. PENROSE formulated the following
stability criterion:

Exponentially growing modes exist if and only if

there is a minimum of g(u) at a value u = £ such that

[m(u - &) [glu) - gl€))au> 0. If glu) has a flat
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minimum occupying a finite range El < u< 82, the insta-
(s o]

bility criterion becomesL[\ (u - i)-z[g(u) - g(E)lau> o
0
throughout the range Sl <& < ge.

The two-stream instability for cold streams follows immediately. We
now consider the two-component plasma in which the distribution functions
of both components are Maxwellian, such as an electron/ion plasma or a two-
component electron gas in a smoothed-out positive-charge background. This
stability problem has been studied by J. D. JACKSON (1960), E. A. JACKSON
(1960), PINES and SCHRIEFFER (1961), FRIED and GOULD (1961), and ICHIMARU
(1962). The dispersion relation is expressed by equation (2.28) which in
general must be solved numerically or graphically, although in some
special cases the asymptotic expansions of the function z(¢) can be
used. There are an infinite number of solutions, and as the plasma
parameters are changed, different roots may become unstable. FRIED and
GOULD discuss this point in detail.

The densities of the two components are generally equal in an electron/
ion plasma. Problems in the field of semiconductors in which this is not
s0 have been discussed by PINES and SCHRIEFFER. All the above authors
except ICHIMARU considered the particular example of a two-component plasma
for which nl = n2, Tl = TQ’ U2 = 0, and showed that growing oscillations
are possible only if

k-U m~\1/2
= =1 1
> 1.308Al[1 +<—mﬁ ]

For simplicity assume k parallel to Ul; the modification for other directions

of k is obvious. The range of wave numbers O £ k = k, for which growth is

t

possible reaches a maximum when
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mN1l/2
v, =z, [1e (3)77]

and then

(k. ]

t max O'755wpl/Al ’

For Ui >> Al

NE® m~1/2
- pl 1
kt——ﬁ——-[l“l—('—mj :]
l ',
E. A, JACKSON discussed graphical methods of cobtaining critical drift
velocities and growth rates for Tl # T2. FRIED and GOULD also investigated
this problem and gave a graph of the relationship between the critical

drift velocity for instability (Ul)c and Tl/T As the ratio Tl/T2

o
increases, (Ul)c decreases.

ICHIMARU concentrated on a two-component electron gas in a smoothed-
out positive-charge background. He considered the range of wave numbers for
which growth is possible and in particular the wave number kC for which
growth first becomes possible as the drift velocity is increased,
distinguishing between k = O and k_ # 0.

Thermal velocity spreads also have important effects on the inter-
action between two neutral plasma clouds. It was pointed out in Section 3.1
that the interaction often occurs in two phases. These have been named
Phase I and Phase II by NOERDLINGER (1961). Phase I consists of the
initial interaction between the four components and is dominated by
the electrons. If Phase I is unstable it is assumed that the two

electron streams come to rest at a temperature higher than their initial

temperature, while the ions remain unperturbed. Phase II then consists
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of the interaction between the counterstreaming ions and the stationary
electrons.

NOERDLINGER (1960) considered Phase I for the case of two identical
Maxwellian streams and obtained results which are identical with those
for a two-component plasma already obtained. In 1961 he examined Phase II,
assuming that the ion streams are moving with velocities iUo, each
having density n and temperature Ti’ while the electron gas is stationary
with density 2n and temperature (meU02/3K). The thermal energy of the
electrons before the onset of Phase I is neglected during Phase IIT.
NOERDLINGER then showed that instabilities arise whenever the distribution
function g(u) possesses a minimum, and that the instabilities are
electron/ion oscillations. It is only necessary to consider the inter-
action of one ion stream with the electrons, and the instability condition

is

KT, 1/2
0.011U >< > .
0 m.
i
A very high stream velocity relative to the ion thermal speed is therefore
required. NOERDLINGER also discussed the wavelengths of the growing
oscillations.
EK, KAHALAS, and TIDMAN (1962) examined both Phase I and Phase II
instability for neutral streams having distribution functions of the form

hnlk.3
g

£, (v) =
Jo ng[(v - U.)2 +'A.2]
- —J J
As was shown in Section 2.2 the dispersion relation for these functions can
be evaluated explicitly. From equation (2.27) the dispersion relation

for two identical colliding streams is
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+1

I=
+1

I

+ 3
U 31kﬁé) . me (w
k - U +ikA)3 (T
LN

1 (W

+1
+1
b

W

On neglect of the ions, Phase I instability occurs provided that
1.6 U [>A
o) e

Proceeding to Phase II, EK et al. assumed a stationary electron gas of

density 2n and mean thermal speedJﬁe', where

and considered the interaction of one ion

+

stream with the electrons. Phase IT

instability occurs if

7.05-_19'5 U2sp2 A 3
M 0 i 1 2,21 2

where M is the ion molecular weight.

1
It Ae is neglected, Ae 2 = % Uoz, and the instability condition is

-4
8.6-10 U 2 > A,2 )
M o i
The critical drift velocity required for instability has a minimum when

A'=U, ie., A 2.2 U02. EK et al. gave extensive results on growth

e o e 3
rates and unstable wave number regions for various values of‘Aé’ andzxi.
Their results agree in general form with those of NOERDLINGER.
KELLOGG and LIEMOHN (1960) considered the interaction of two neutral

Maxwellian plasma clouds for a range of relative densities and temperatures.

They illustrate graphically the stable and unstable regions as functions
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of the energy ratios (KTl/meU12>’ (KTZ/meUQE) for the density ratios
Nl/N2 = 1,10, assuming that U2 = 0. In the extreme case of one plasma
at zero temperature, the system is always unstable. For extreme
differences between the two plasmas, electron/ion instabilities may occur
as rapidly as electron/electron instabilities, and in such cases the

separation of the interaction into Phase I and Phase II is invalid.
3.3 Instability in a magnetized plasma

The presence of an external magnetic field modifies the instability results
presented in Sections 3.1 and 3.2, and in some instances leads to new

effects. The general dispersion relation for longitudinal oscillations is
given by equation (2.32), where Eo is parallel to the z-axis and k lies in

O and the dispersion

1l

the x-z plane. For oscillations parallel to Eo’ kx

relation reduces to

L e e,

Bgo) = 1- [ -0
? X 2 N v, - W kZ

2

Since this is identical with the dispersion relation in the absence of an
external magnetic field, the field has no effect on oscillations propagating
parallel to it.

SEN (1952) and HARRIS (1959a, b, 1961) have considered longitudinal
oscillations with wave vector k perpendicular to En (kz = 0). For the

distribution functions of the form

n.
= = J
fjo(vl_,vz) on h(VZ) b

d(V-L - U>
Vi

which represents particles having a constant speed around the magnetic

field lines, the dispersion relation (2.36) becores
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2 00 2
w_ J (b
1+TP3 1 a [V nn() =0
Ly, 2D.db /. n-uvf_. ’
3 Pes 7 =-c0 ©J
ka'
where b, = TS_QT . The form of h(vZ) does not appear. ©SEN determined that
cJ

in an electron/ion plasma in which the ion motion is neglected, unstable
solutions cccur for large values of bj’ and HARRIS showed that instability
occurs for bj > 1.8k,

Fof oscillations propagating at an angle to B, (kx £ 0, k #0),
the form of h(vz) becomes important. HARRIS took

h(vz) = d(vz) s

so that the particles have no motion along the field lines, and deduced
that in an electron/ion plasma for which the ion motion is neglected,
it is possible to find instability for some value of (kx,kz) provided

that w__ > v

pe cel' If the ion motion is included the instability

condition becomes wpe > W, The fastest growth rate occurs for
kX%Oande%O.

When the distribution functions fjo possess thermal velocity
spreads, two effects may arise. The first is a Landau damping of
oscillations for which k, # 0. BERNSTEIN (1958) demonstrated that all
solutions of the dispersion relation for a stationary isotropic

Maxwellian plasma

Ya3/2 5
— J 2 2
fjo(vi,vz) = 1, (—n > e}@[— Yj(vz vy )J

are stable but that Landau damping occurs for longitudinal oscillations with

kz % 0. If k is perpendicular to Eo’ (kz = O), the oscillations are not
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damped, but gaps appear in the spectrum of allowed frequencies at multiples
of the gyrofrequency.

The second possible temperature effect is an instability caused by
temperature anisctropy. HARRIS (1959a, b) chose an electron distribution
function

n o exp(- v|2/b,2)

A 2 2 2 2
] (vz - O(Z )

~—
il
)]
N
-

ij(YL’ v

neglected the ions and showed that instability only occurs fer kx % 0,

. A ; - } s .
k, # 0 s an example, if k =k , a k_ Iwce! and « = O, instability

ccurs if wpe > 1.1 lwce’. HARRIS (1961) stated that a plasma with

distribution functions

(@]

) 0 /L zZ

f. (v,,v ) = exp | - —= - >
| b

Jor L’z 3/2 '2 \ '2 2

for the electrons and ions possesses unstable longitudinal oscillations for
some value of (k_,k ) provided that w_ > w ..
X’z pe ci
VEDENCOV and SAGDEEV (1959) and TIMCFEEV (1961) also studied the effects
of temperature anisotropy in electron/ion plasmas. Their ion distribution
function is anisotropic, but the form of their electron distribution
function is not clear. VEDENOV and SAGDEEV considered wavelengths long

compared to the ion gyroradius and obtained a longitudinal instability

for k_ # 0 provided that

Enn TIQ 8nnoT,
5T > 1t
B T B
0 z o
o M 2 N
where «, =T «, T TIMCFEEV considered all wavelengths and cob-
: l

tained instabilities whkenever az > o -
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BERNSTEIN and KULSRUD (1960, 1961, 1962) investigated longitudinal
oscillations in electron/ion plasmas when kx # 0 under the limitation
that

kr< 1,
X

where r is the gyroradius of an ion at the larger of the ion or the
electron mean thermal energies. Under this condition the dispersion

relation becomes

where

[Tes o) o (2] [uffjo(vL,vZ)d3v:|-l .

F. (v ) =|2n

jo' =z %0
This dispersion relation has the same structure as equation (2.25) for
longitudinal oscillations in the absence of an external magnetic field.

Consequently a necessary condition for instability is that

Sﬂw 2 F, (v_) should possess a minimum.
/., PJ Jo - z
J
BERNSTEIN and KULSRUD took various forms for the distribution
functions. In their 1960 paper it is shown that if the ions are much

colder than the electrons, an electron drift velocity Ue along the field

lines causes an instability when

m, 1/2
U>< ) A .
e m. e

1

If the ions are much warmer than the electrons, instability occurs when

m, 1/2
0,> () by -
e m, i
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In their 1961 paper they considered a Maxwellian ion distribution and an

electron distribution

fout) = 1,0 [1 oty ) B

where foe(v) is Maxwellian, I'is a constant, £ represents an electric
field applied parallel to B_ and ¢(x) is a function tabulated by
SPITZER and FARM (1953). In their 1962 paper the electron distribution
is Maxwellian and the ion distribution is Maxwellian with a tail
modified by the presence of cold neutral molecules.

OZAWA et al. (1962) investigated the general dispersion relation for
longitudinal oscillations in a magnetized plasma and obtained a general
stability criterion, which is very complicated in contrast to the Penrose
criterion for a nomnmagnetized plasma. OZAWA et al. applied their criterion
to a Maxwellian electron plasma having temperature anisotropy and presented
graphs of stable and unstable regions for variations in.wpe/fwc I,

e

b /aékz, a‘zkxz/wce2 . The plasma is always stable to longitudinal

ce,

oscillations whenw__ < 0.6 ko |.
pe ce

BUNEMAN (1962) extended his work on the two-stream instability to
include an external field. Using the hydromagnetic equations, he
analyzed a nonequilibrium situation in which crossed electric and magnetic
fields have induced an electron drift across the magnetic field lines
while the ions have not had time to respond. By neglecting the
external electric field he derived a dispersion relation for longitudinal

oscillations
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where 6 is the angle between k and Eo’ and U, is the drift Velocity of the

d
ions relative to the electrons. The growth rate of the unstable solutions
of this equation is large compared to the rate of change of the ion drift
velocity in response to the electric field, provided that the magnetic
energy of the plasma is much less than its rest energy. The e-folding time
of an instability propagating at the least unstable angle to the magnetic
field is proportional to (mi)l/3 (1 + mcezﬁnpee)l/6, and a large magnetic
field is therefore required to lengthen this time substantially; for large
fields only values of 6 near 90° are affected. The main effect of the
instabilities appears to be a retardation of the electrons rather than an
acceleration of the ions, in support of BUNEMAN'S ideas on resistivity in
a collisionless plasma.

PARKER (1959) considered the effect of a weak external transverse
magnetic field on the collision of two neutral plasma clouds. He
neglected temperature effects and assumed that the ions were not affected

by the magnetic field. The dispersion relation for Phase II of the

interaction is

2

20 w(w -iw ) 2m

2 2_2v2 1 2 pe ce _ e 2.2,.2 + 2y _

(W° -k U, ) Eﬂ - 5 5 ] o Vpe @ (w k2Uo =0 .
w - W o i

PARKER showed that unstable solutions exist; the most rapid growth in

space occurs when

and the growth rate in time is of the same order of magnitude as the ion
-1

plasma period_wpi
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3.4 Additional effects

In all preceding calculations we have assumed a collisionless homogeneous
plasma and have performed first-order calculations on longitudinal
oscillations, neglecting any coupling to transverse modes. A few calcu-
lations which have been made without some of these restrictions are
now described.

The effect of collisions on plasma oscillations may be included
in the hydromagnetic equations by means of a momentum exchange term,

so that the equation of conservation of momentum for each species

becomes

55. v, mnm u X B

5?1 + (Bj 'V)Ej = m.rfm ) + _g_(
J

where Vi is the mean collision frequency of particles of species j with

species r.

BUNEMAN (1963) used this collision term in an analysis of longitudinal
oscillations in a current-carrying partially ionized gas in an external
magnetic field when collisions with neutral particles predominate. His
results are discussed in Section 5.2.

In the Boltzmann equation

of | of. q. v X B

R 10 S R I

the choice of a collision term amenable to analysis is more difficult.

LEWIS and KELLER (1962) and DOUGHERTY (1963) suggested

ij n,
(‘Fc‘) =“V3<f1'3'fo>
col. o}
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as a suitable first~order term when collisions with neutral particles
predominate, and FARLEY (l963a, b) applied this to the same problem as
BUNEMAN. FARLEY'S work contains several assumptions about the form of the
zero-order distribution functions. His results, applied to an ionospheric
problem, are reviewed in Section 5.2.

TIDMAN (1961) considered the effect of small angle Coulomb scattering
on two-stream instabilities in a fully ionized gas by means of an expansion
of Fokker-Planck collision terms in powers of the collision frequency.

He obtained collisional damping of the oscillations which competes with
the growth mechanism.

Most plasmas occurring in nature are expected to be nonuniform in
space, and the presence of inhomogeneities may modify unstable longi-
tudinal oscillations by causing coupling to transverse modes. Some calcu-
lations have been made of the radiation from stable longitudinal oscil-
lations produced by temperature and density gradients and discontinuities,
for instance by TIDMAN and WEISS (1961a), but little work has been done
on radiation excited by unstable oscillations.

FRIEMAN and PYTTE (1961) studied longitudinal oscillations in an
electron plasma with a slightly inhomogeneous distribution function. They
assumed that the ions were fixed and used two approaches; the first

consisted of a perturbation method
£ (x,v) = £ (v) + £, (xv) ,

from which it was shown that small departures from spatial homogeneity may
change the stability criteria slightly; the second was a W.K.B. treatment
of a slow variation of fo(x,v) in space from which a stability criterion

was obtained.
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KRALL and ROSENBLUTH (1962, 1963) found unstable modes for a plasma
in a slightly inhomogeneous magnetic field B parallel to the z-axis of

the form

[B| = Bo(l + £x) .
In the 1962 paper only longitudinal modes were considered, but in the
1963 paper low frequency transverse modes were included. A pure transverse
mode and coupled longitudinal modes were found to be unstable.
HARRISON (1963) and HARRISON and STRINGER (1963) examined plasmas
with a mean velocity u parallel to the z-axis, which varies in magnitude

in the x-direction. HARRISON considered the "slipping" stream
lul =u  +ax,

while HARRISON and STRINGER studied the "adjacent” streams

Conditions for stability of longitudinal modes were established, and thermal
velocity spreads were found to increase the stability of the plasmas.

In the absence of an external magnetic field and inhomogeneities,
there is nonlinear coupling between longitudinal and transverse waves.
STﬁRROCK (1957) used a perturbation analysis of the hydrcmagnetic
equations for a cold stable plasma, and TIIMAN and WEISS (1961b) performed
a similar calculation. Two longitudinal waves both at a frequency
w = wp interact to emit a transverse wave at a frequency 2wp. STURRCCK

(1961a) obtained the same result with a Hamiltonian analysis, and showed
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that the interaction of only longitudinal modes is at least fourth order,
whereas the interaction of two longitudinal modes to produce a transverse
mode is third order.

As was pointed out in Section 2, linear theory indicates the
possibility of growth of longitudinal oscillations, but is insufficient
to describe their eventual development. Attempts to solve the nonlinear
equations for unstable plasmas have involved numerical analysis or quasi-
linear theory.

BUNEMAN (1959, 1961) set up a numerical integration system including
nonlinear terms for a cold stream of electrons passing through cold
stationary ions. The plasma was treated as one-dimensional, and slight
fluctuations were included to initiate oscillations. The results of
calculations using 256 particles of each species indicate that the
linear theory applied for about three electron plasma periods, after
which nonlinear effects became important. After about 50 plasma periods
the electron drift was completely destroyed, and at the end of the
calculations (86 wpe-l) both electrons and ions were in disorder.

BUNEMAN concluded that collective effects in collisionless plasmas may
act like turbulence in fluid dynamics, redistributing energy among the
particles.

The guasi-linear theory has been developed by TRUMMOND and PINES
(1962) and by VEDENOV (VEDENOV et al. 1961, 1962; VEDENOV, 1663). It
applies to the nonlinear interaction between particles and waves in a weakly
turbulent plasma, that is, a plasma in which the energy possessed by longi-

tudinal oscillations 1is much less than the particle energy but much greater

than the thermal equilibrium value of the wave energy. The theory is useful
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for an unstable plasma if the growth rate of the longitudinal oscillations
is much less than their frequency, and it provides the new distribution
function in phase space produced by the unstable oscillations. It does

not include particle collisions which produce thermal equilibrium on a
larger time scale. Recently FRIEMAN et al. (1963) described the
Bogoliubov-Krylov technique of multiple time scales by a particular example
in which only a single mode is excited, in an attempt to develop a more

rigorous basis for the quasi-linear theory.

In Section 3.2 it was shown that thermal velocity spreads impose severe
restrictions on the growth of longitudinal oscillations. It has been dis-
covered, however, that many plasmas which are stable to longitudinal oscil-
lations possess unstable transverse modes and the importance of these
transverse instabilities 1s now being recognized.

DAWSON and BERNSTEIN (1958) and HARRIS (1961) demonstrated that a
cold stream of electrons moving along the magnetic field through a cold
electron/ion plasma excite transverse instabilities. WEIBEL (1959),

HARRIS (1961), SAGDEEV and SHAFRANOV (1961), and SUDAN (1963) found
transverse instabilities in a plasma with temperature anisotropy, and
WEIBEL proved that the presence of an external magnetic field is not
essential.

These transverse instabilities have phase velocities much less than
the speed of light in contrast to fast transverse waves such as radio
waves in a plasma. KXAHN (1962) showed that in any electron plasma in
which the distribution function has central symmetry, transverse insta-

o0 o0
bilities exist unless fOUQfO(U,a,B)dU, and fo ur_(U,a,p)au are
u

independent of o and B, where (lLa,B) are the spherical polar coordinates
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of v. KAHN pointed out that if longitudinal and transverse instabilities
occur together in a plasma, the longitudinal instabilities have a greater
amplification rate and are therefore more important.

NOERDLINGER (1963) obtained a general dispersion relation for transverse
waves propagating parallel to an external magnetic field and considered
methods of finding its unstable solutions. He applied his results to an
electron gas with temperature anisotropy and to an electron/ion gas with
temperature anisotropy, obtaining various transverse instabilities.

BUNEMANN (1963) found transverse instabilities during the interaction
of two identical warm neutral plasma clouds for all values of the cloud
velocities iUo, whereas, as was shown in Section 3.2, longitudinal insta-

bilities only exist for very large values of Uo'
4.  The Physical Mechanisms of Growth

It has been shown in previous sections that in a uniform unbounded collision-
less plasma long range Coulomb interaction of the components may give rise
to growing oscillations. This may happen when a stream of particles is
injected into a plasma, when two neutral plasma clouds collide, when the
electrons in a plasma possess a net drift relative to the ions, or when
there is some other velocity anisotropy in the plasma. The kinetic energy
involved in the anisotropy is converted into oscillatory energy and
eventually into random thermal energy. The two physical mechanisms which
have been used by various authors to explain these effects are charge
bunching and particle trapping.

Charge bunching is a linear mechanism which is most effective in cold

streams. If the velocity of a cold stream is slightly perturbed by an
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oscillatory electrostatic field, a bunching in space of the stream particles
occurs and this amplifies the potential of the original disturbance. The
space-charge bunching thus sets up growing coherent oscillations and
transfers the streaming energy of the particles to the oscillations. Any
velocity spread possessed by the stream reduces the coherence of the
oscillations for particles of different velocities gradually move out of
phase and phase mixing occurs. A large velocity spread can destroy the
collective plasma motion and all oscillations occurring in the plasma

are then damped. This is the phenomenon of Landau damping, which was
first discovered in a stationary, collisionless Maxwellian plasma by
LANDAU (1946). 1In general, the growth of longitudinal oscillations in a
warm stream is maintained provided that the stream velocity is somewhat
larger than the mean thermal speed.

Particle trapping is a more complex mechanism and has been the
subject of much discussion (BOHM and GROSS, 1949; DAWSON, 1961; KILDAL, 1961,
1963). Particles moving at velocities close to the phase velocity of a
wave may exchange energy with the wave and become trapped in the potential
wells associated with the wave. Those particles moving slightly faster
than the wave give energy to the wave, whereas those moving slightly
slower take energy from the wave. Particle trapping may thus cause
growth or damping of oscillations. The trapping of a particle cannot
occur in less than one wave period, and damping or growth by this
mechanism requires several periods to become effective. Since the actual
trapping is & nonlinear mechanism it is not responsible for the initial
growth of small amplitude longitudinal oscillations, but it does provide
an estimate of the maximum energy exchanged between the particles and the

wave when the linear approximation is no longer valid (DAWSON, 1961).
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5. DNatural Phenomena
5.1 Solar radio noise

Solar radio noise is classified into several types; a recent account of all
known types has been presented by WILD et al. (1963). Types II and III,
consisting of nonthermal radiation in the meter wavelength range, were
recorded first by PAYNE-SCOTT et al. (1947) and by WILD and McCREADY (1950).
Type II is characterized by bursts of noise which drift from high to low
frequencies over the range 200 Mc/s to 10 Me/s in about 10 minutes. Eighty
per cent of the bursts consist of first and second harmonics which have
narrow bandwidths, are unpolarized and of comparable intensities (about
10_18 watts m 2 (cps)-l); they both exhibit a small frequency splitting

in 85 per cent of the noise signals recorded. The fast drift radio

noise designated type III has a drift of about 60 Mc/s per second and a
duration of about 2 seconds at 150 Mc/s. Fundamental frequencies observed
at 80 Mc/s and 40 Mc/s and the harmonic at 160 Mc/s have relative intensi-
ties of about 2:1. The higher fundamental appears to lag the harmonic

by some 2 seconds; this delay has been ascribed to a difference in their
ray paths.

Chromospheric flares and types II and IIT radio noise appear to be
associated phenomena and, therefore, are considered to have a common
origin. Type II bursts tend to appear in the post-maximum phase of the
solar flares, while type III can occur in the absence of flares or in
groups near the initial stage of the flares. Near visible sun-spot maxima
type II noise occurs about once every 50 hours in contrast to type III

which occurs at an average rate of 3 per hour.
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As some 85 per cent of type II bursts are associated with type III
noise, they possess a distinct time relation which suggests that both can
originate from a single disturbance. Although it is believed that both
types IT and III are generated by plasma oscillations, the cause of the
plasma instability is less certain. Several authors (e.g., ROBERTS, 1959;
MAXWELL and THOMPSON, 1962) have postulated that the compound type bursts
arise from growing longitudinal plasma oscillations which are excited by
the shock front of a large amplitude disturbance traveling radially outward
through the corona and by shock waves propagating at high speeds transverse
to it. The former shock induces type II and the latter type IIT bursts.
The position and velcocity of the disturbance have been determined from the
cbserved emission frequency and frequency drift rate, respectively, and
some model of coronal electron density distribution. The main disturbance
is believed to originate at a height of some 5 X lOu km above the photo-
sphere and to move outward along a coronal streamer at a radial velocity

of about 103

>

km/sec. The shock waves causing type III bursts move at
about 10~ km/sec. UCHIDA (1962) contends that types II and III radio
emissions may have a common radiation mechanism but that their corre-
sponding longitudinal plasma oscillations possess different modes of
excitation. While a magnetohydrodynamic shock generates type II bursts,
high-velocity electrons streaming outward through strata of diminishing
electron density in the corona produce the plasma oscillations responsible
for type III bursts. The frequency splitting of type II may represent a
gyromagnetic effect analogous to the Zeeman effect. STURROCK (1961b)

explained the doublets of the first and second harmonics by the same

mechanism since they display a similar sequence. From considerations of
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the dispersion relations for the magneto-ionic waves he derived a freguency
splitting of the order of l/Eanegﬁope), a separation which indicates
that a magnetic field of 20 G is associated with type II radioc noise.

The sclar emission was earlier attributed to unstable longitudinal
plasma oscillations by MAIMFORS (1950) and SEN (1952), who proposed that
the electrons in the plasma have a net gyration velocity about the
static magnetic field. MALMFCRS' dispersion relation contained an
error pointed out by GROSS (1951), but SEN obtained the correct dispersion
relation and showed that it possessed unstable solutions. He noted that the
linear approximation can give only qualitatively significant results.

PARKER (1958) proposed that the plasma oscillations causing type II
radio noise are generated by the collision of two uniform interpenetrating
neutral plasma streams in what NOERDLINGER (1961) refers to as phase II
of the interaction. The growth of plasma instabilities under these
conditions was discussed in Section 3, where it was shown that if 2UO
is the relative velocity of two identical Maxwellian streams, phase II

instability will not occur unless

KT, 1/2
0.011U0 > < > .
o m,
1
This condition is not likely to be satisfied in the sun.

In summary, it appears that unstable plasma oscillations are a
probable source of types II and III solar radio noise bursts, but that
the plasma configuration producing them remains uncertain. To account
for the emission of equally intense first and second harmonics, it is

necessary to invoke nonlinear in addition to linear mechanisms.

STURRCCK (l96la) has discussed wave interactions. The conversion of the
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longitudinal oscillations into radiation may take place at steep density
or temperature gradients (TIDMAN and WEISS, l96la), by local space-charge
fluctuations acting as scattering centers (COHEN, 1962) or by magnetic
field coupling ( BURKHARDT et al., 1961). Nonlinear conversion of longi-
tudinal oscillations to radiation has been investigated by TIIMAN and

WEISS (1961b).
5.2 Ionospheric irregularities

The observation of ionospheric irregularities by radio soundings in the
1-4 Mc/s range has recently been supplemented by techniques involving the
measurement of backscatter of microwave radiation in the 50-150 Mc/s range.
These radar measurements have shown that equatorial sporadic-E irregulari-
ties at altitudes of 105 km resemble plane wave-fronts, moving at velocities
of about 360 m/sec with wave-normals in a plane normal to the magnetic
field lines and wavelengths of 1-3 meters (BOWLES et al., 1963).

The irregularities are strongly associated with the flow of current in

the equatorial electrojet (COHEN and BOWLES, 1663). Similar irregulari-
ties are observed in the auroral regions associated with the auroral
electrojets (PETERSON, 1960).

These observations appear to fit an explanation proposed simultane-
ously by BUNEMAN (1963) and by FARLEY (1963a, b) based on unstable longi-
tudinal plasma oscillations. BUNEMAN'S analysis is hydromagnetic while
FARLEY'S is kinetic. The analysis follows the lines of Section 2 and
deals with perturbations of a plasma in which the neutrals and ions are
stationary and the electrons possess a net drift velocity across the

external magnetic field. Collisions of electrons and ions with neutrals
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play an important part in coupling the equations. The theory assumes that
Ve << ’wce] andwci << Vi which holds for the ionosphere at altitudes in
the range 100-110 km. Unstable longitudinal oscillations occur, provided
that the electron drift velocity is somewhat greater than the ion thermal
speed, a somewhat surprising result as in the absence of collisions and a
magnetic field, the electron drift velocity must be greater than the electron
thermal speed for instability to occur. When the theory is applied to the
electrojet problem in which the electron drift velocity is of the order of
500 m/sec, unstable oscillations occur having wavelengths of 1-3 meters,
and phase velocities L05-375 m/sec, propagating within a degree or two of
the normal to the magnetic field. There is thus good agreement between

experiment and theory.
5.3 Additional observations

The two-stream instability has been suggested as the cause of a number
of other natural events which are described briefly:

Auroral electrons. PARKER (1958) suggested that the high energy

(50-100 kev) auroral electrons are excited by Phase II instability in
the collision of two neutral plasma streams. The energies of the
electrons observed in the auroral zone are of the same order of
magnitude as the protons in the solar wind, and Phase II instability
provides a suitable energy exchange mechanism.

Cometary interactions. HOYLE and BARWIT (1962) considered the

possible occcurrence of the two-stream instability between cometary
particles and the solar wind. They concluded that the observed

acceleration of cometary particles cannot be accounted for by this
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mechanism, but that the solar proton momentum is transferred to cometary
ions via a pressure build-up of the transverse magnetic fields imbedded
in the solar wind. During periods of enhanced solar activity, however,
longitudinal plasma oscillations may occur and may be converted into
electromagnetic radiation. Cometary radio noise has never been detected
by earthbound equipment, but this does not preclude its existence since
any emission would probably be at a frequency below the ionospheric
cut-off.

Planetary radiation. Many theories have been invoked to explain the

microwave radiation from Venus, and one of these (SCARF, 1963) suggests
an instability between the solar wind and the Cytherean ionosphere.
Although re-evaluations of the data from Venus favor a thermal source
for the radiation (ROBERTS, 1963), a model of solar wind-ionosphere
interaction involving plasma instabilities may have some merit for

planets possessing only weak magnetic fields.
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